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I. INTRODUCTION  

 In recent years, a lot of interest has been shown in the study of symmetry properties of solutions of nonlinear elliptic 

equations, reflecting the symmetry of domain. Linear elliptic equations arise in several models describing various phenomena in the 

Applied sciences.  It is an important goal in mathematical analysis to establish symmetry property of solutions of differential 

equations both from a theoretical point of view and for the applications .In 1979 Gidas, Ni and Nirenberg [9, 10] introduced the 

method of moving planes to obtain the symmetry results and monotonicity for positive solutions of nonlinear elliptic equations. Li and 

Ni[19] proved the symmetry results for the conformal scaler curvature equation                         

Δu + K(x)u(n+2)/(n-2)     = 0 in  Rn; n ≥ 3. 

Recently, Naito [16] studied the problem of radial symmetry of classical solutions of semilinear elliptic equations 

Δu+V (|x|) eu = 0 in R2, 

by the moving plane method. Recently Dhaigude and Patil [2] studied the radial symmetry of positive solutions of semilinear elliptic 

problem in unit ball. Also in [4] authors obtained symmetric results for semilinear elliptic boundary value problems (BVP) Δu + f(|x| 

u;∇ u) = 0 in Rn  u(x) →0 as |x| →∞. 

 In [5] authors studied the symmetry of solutions of elliptic boundary value problem 

Δu + V (|x|) eu = 0 in R3, 

using moving plane method. Dhaigude and Patil [3] have proved some symmetry result for the system of nonlinear BVP. Further 

author [6] proved that solution of a system of semilinear elliptic Neumann boundary value problem must be radially symmetric. 

Author [7] also proved radial symmetry of positive solutions for elliptic system with gradient term in Rn. Symmetric solutions of 

nonlinear elliptic Neumann boundary value problems are obtained by author  D. P. Patil[8]. It is well known  that a classical tool to 

study symmetry of such solutions is the moving plane method. Which goes back to Alexandrov and Serrin [20].  Since last four 

decades or so, “method of moving planes” has been numerous applications in studying non linear partial differential equations. It can 

be used to prove symmetry of solutions. Method of moving planes has been improved and simplified by Berestycki and Nirenberg in 

[21] with the aid of maximum principle in small domain. After that many other results followed with different operators, different 

boundary conditions and different geometries. 

 In this paper the nonlinear system of the following form 

 

Δu(x) + g1(|x|) eu(x) + g2(|x|) ev(x) = 0      in R3 (1.1) 

 

                                                                Δv(x) + g3(|x|) eu(x) + g4(|x|) ev(x) = 0; 

 

u(x) →0; v(x) →0 as |x| → ∞                              (1.2) 

 

where g1(x); g2(x); g3(x); g4(x) are locally Holder continuous in (0;∞), satisfying u € L∞(R3) and      v € L∞(R3) is studied. Naito [13] 

studied dirichlet nonlinear BVP 

Δu(x) + f(|x|; u(x)) = 0 in R2 

 

u(x) → 0 as |x| →∞ 
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Problems of this kind arise in geometry and various branches of physics; see Chanillo and Kiessling [14]. Chen and Li [17] explained 

and used moving plane method in proving symmetry of solutions of BVP. Chen and Zhu [18] proved radial symmetry of solutions of 

polyharmonic Dirichlet boundary value problem 

(- Δ)mu = f(u) 

 

in unit ball by using the corresponding integral equation and moving plane method in integral form. Recently, Hui and Kim [12] 

proved the symmetry of solution of the equation 

Δv + αev + β x:∇ ev = 0 in Rn. 

 

We organize the paper as follows: Section 2 is devoted to some preliminary results which will be used in next section. The 

symmetric result and useful lemmas are proved in the last section. 

 
2. PRELIMINARY RESULTS: 

 

In this section, first we state some lemmas and theorem which are useful to prove our main result. 

 

Lemma 2.1: Suppose that Ω satisfies the interior sphere condition at x0 € ∂ Ω. Let L be strictly elliptic with c ≤ 0. If                      u € 

C2 (Ω) ∩ C (Ω) satisfies L (u) ≥ 0 and max Ω u(x) = u(x0) then either u = u(x0) on Ω or lim inft → 0  (u(x) - u(x0 + tν) / t   > 0, for every 

direction ν, pointing into an interior sphere. If u € C1 subset of Ω U{0}  then ∂u/ ∂ν (x0) < 0. 

 

Lemma 2.2 [16] Let Ω be unbounded domain in Rn, and let L denote the uniformly elliptic differential operator of the form         Lu = 

aij(x)∂iju + bi(x)∂iu + c(x)u 

where aij ; bi; c € L∞ (Ω). Suppose that u ≠ 0 satisfies L(u) ≤   0 in Ω and u ≥ 0 on ∂Ω: Suppose furthermore that there exist a function 

w such that w > 0 on Ω U ∂Ω and L(w) ≤ 0 in Ω. If u(x)/ w(x) →0 |x| → ∞; x ϵ Ω 

 then        

u > 0 in Ω: 

 

Theorem 2.1 [11] Let u(x) satisfies differential inequality L (u) ≥ 0 in a domain Ω where L is uniformly elliptic. If there exist a 

function w(x) such that, 

w(x) > 0 on Ω U ∂Ω. L (w) ≤ 0 in Ω. 

 Then u(x) / w(x) cannot attain a non negative maximum at a point p on ∂Ω, which lies on the boundary of a ball in Ω and if u/w is not 

constant then 

, ∂ /∂ν (u/ w) > 0 

at P where ∂ /∂ν is any outward directional derivative. 

 

Let w be harmonic function in R3and w(x) = o (|x|) as |x| → ∞. Then w must be constant. 

 

Lemma 2.3 [11] Let f be bounded and locally Holder continuous in Ω and let w be the Newtonian potential of f. Then w € C2(Ω), Δw 

= f  in Ω and for any 

x € Ω Dij w(x) = ∫Ω0 Dij Γ(x - y)(f(y) -  f(x))dy - ∫∂Ω0 DiΓ(x - y)vj (y)dsy 

here Ω0 is any domain containing Ω for which the divergence theorem holds and is extended to vanish outside Ω. 

 

Lemma 2.4 [5] If w(x) = 1/ 3ω3  ∫R3 (  1 / |x – y| - |y| ) f(y)dy. 

 Let f ϵ L∞(R3) ∩ L1(R3). Then  

 

Lim |x| →∞   w(x)/ log |x| = 1/ 3ω3 ∫R
3 f(y) dy. 

 

   3. MAIN RESULTS: 

 

Before going to prove main result we prove some lemmas. 

 

Lemma 3.1 Let (u; v) be solution of (1.1) where g1(x); g2(x); g3(x); g4(x) are locally Holder continuous in (0;1), satisfying u+ ϵ L∞(R3) 

and v+ ϵ L∞(R3) and   0 < 1/ 3ω3  ∫R3 g1(|x|)eu(x) + g2(|x|)ev(x)dx = β1 < ∞                (3.1) 

 

and 0<1/3ω3∫R3 g3(|x|)eu(x) +g4(|x|)ev(x)dx=β2 <∞                                                                (3.2) 

 

Then lim|x| →∞ u(x )/log |x| = lim|x| →∞  u(xλ ) / log |x| = - β1                                                 (3.3) 
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and  lim|x| →∞  v(x ) / log |x| = lim|x| →∞  v(xλ ) / log |x| = - β2                                                (3.4) 

 

Proof: Define the functions w1(x) and w2(x) as, 

 

w1(x) =  1/ 3ω3  ∫R3 (  1 / |x – y| - |y| ) g1(|y|)eu(y) + g2(|y|)ev(y)dy  in R3                                (3.5) 

 

w2(x) =   1/ 3ω3  ∫R3 (  1 / |x – y| - |y| ) g3(|y|)eu(y) + g4(|y|)ev(y)dy  in R3                               (3.6) 

 

As x1≠x2 we have w1(x1)≠ w1(x2) and w2(x1)≠ w2(x2), and so w1(x) and w2(x) are well defined, and 

Δw1 = g1(|y|)eu(y) + g2(|y|)ev(y)                                                                                   (3.7) 

and 

Δw2 = g3(|y|)eu(y) + g4(|y|)ev(y)                                                                                    (3.8) 

 

From equations (3.3), (3.4) and u+; v+ ϵ L∞(R3) we have g1(|x|)eu(x) + g2(|x|)ev(x) ϵ L∞(R3)∩L1(R3) and                                    g3(|x|)eu(x) + 

g4(|x|)ev(x) ϵ L∞(R3)∩L1(R3). By lemma 2.1 we have 

 

Lim |x| →∞   w1 (x)/ log |x| = 1/ 3ω3  ∫R3 g1(|y|)eu(y) + g2(|y|)ev(y) = β1  < ∞                           (3.9) 

 

Lim |x| →∞   w2 (x)/ log |x| = 1/ 3ω3  ∫R3 g3(|y|)eu(y) + g4(|y|)ev(y) = β2  < ∞                           (3.10) 

Therefore we have Lim |x| →∞ w1 (x)/ log |x|  β1  < ∞  and   Lim |x| →∞  w2 (x)/ log |x| =  β1 < ∞                              (3.11) 

Before going to next lemma we shall define, 

w1;λ_(x) = u(x) -  u(xλ) 

w2;λ_(x) = v(x) -  v(xλ) 

 

Lemma 3.2 Let λ > 0 then w1;λ_(x) and w2;λ_(x)satisfies 

 

Δ w1;λ_(x) + C1;λ(x) w1;λ_(x) ≤ 0 

Δ w2;λ_(x) + C2;λ(x) w2;λ_(x) ≤ 0 

 

where  

C1;λ(x) = O(|x|)-δ1) and C2;λ(x) = O(|x|)-δ2) as |x| →∞ 

for some constantsδ1; δ2 > 3. 

 

Proof: Since gi(|x|); i = 1; 2; 3; 4: is nonincreasing in |x| = r and |xλ| > |x| for x ϵ∑λ. 

and 𝜆> 0 we know that u(xλ) satisfies the same equations that u(x) does. 

 

Δu(xλ) + g1(|xλ|)eu(xλ) + g2(|xλ)ev(xλ) = 0                                                                        (3.12) 

and 

Δv(xλ) + g3(|xλ|)eu(xλ) + g4(|xλ)ev(xλ) = 0                                                                        (3.13) 

 

Subtracting equation (3.12) from equation (1.1) we get, 

 

0 = [Δu(x) + g1(|x|)eu(x) + g2(|x|)ev(x)] - [Δu(xλ )+ g1(|xλ|)eu(xλ) + g2(|xλ)ev(xλ)] 

= Δu(x) - Δu(xλ) + [g1(|x|)eu(x) + g2(|x|)ev(x) -  g1(|xλ|)eu(xλ) - g2(|xλ)ev(xλ)] 

≥ Δw1;λ_(x) + [g1(|x|)eu(x)- g1(|x|)eu(xλ)] + [g2(|x|)ev(x) - g2(|xλ)ev(xλ)] 

= Δw1;λ_(x)+ g1(|x| [eu(x) - eu(xλ)] + g2(|x|) [ev(x) -  ev(xλ)] 

= Δw1;λ_(x) +{[ g1(|x| [eu(x) - eu(xλ)] + g2(|x|) [ev(x) -  ev(xλ)]]/ (u(x) - u(xλ)} (u(x) - u(xλ) 

= Δ w1;λ(x) + C1;λ_(x)(w1;λ_(x)) 

 

Where 

 

C1;λ_(x) = [ g1(|x| [eu(x) - eu(xλ)] + g2(|x|) [ev(x) -  ev(xλ)]]/ (u(x) - u(xλ) 

 

Similarly, 

 

0 ≥ Δ w2;λ(x) + C2;λ_(x)(w2;λ_(x)) 

where 

C2;λ_(x) = [ g3(|x| [eu(x) - eu(xλ)] + g4(|x|) [ev(x) -  ev(xλ)]]/ (v(x) - v(xλ) 
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Take ϵ > 0 so small that αi + βj -  ϵ > 3 for i = 1; 2; 3; 4. j = 1; 2. Then we have 

 

u(x)/ log |x| ≤ - (β1 - ϵ),  u(x) ≤ - (β1 - ϵ) log |x|; u(xλ )/ log |x| ≤ - (β1 - ϵ), 

 

v(x )/ log |x| ≤ - (β2 - ϵ), v(x) ≤ - (β2 - ϵ) log |x|, v(xλ )/ log |x| ≤ - (β2 - ϵ) 

 

Thus we have u(x) ≤ - (β1 - ϵ) log |x| and u(xλ ) ≤ - (β1 - ϵ) log |x| for all large |x|. Also v(x) ≤ - (β2 - ϵ) log |x| and         v(xλ) ≤ 

- (β2 - ϵ) log |x| for all large |x|. From rαigi(r) < ∞, for some αi > 0 Thus we can conclude that C1;λ_(x) = o(|x|-(α1+β1- ϵ)) and C1;λ_(x) = 

o(|x|-(α2+β2- ϵ))  as |x|→∞. This implies the result with α1+β1- ϵ = δ1 and α2+β2- ϵ = δ2. By virtue of lemma 3.2 we can take   R0 > ϵ so 

large that, 

1/ |x| + |x|2 log (1/ |x|) ≥ C1;λ_(x)                                                                     (3.14) 

and 

1/ |x| + |x|2 log (1/ |x|) ≥ C2;λ_(x)                                                                     (3.15) 

 

Lemma 3.3 Let λ > 0 If w1;λ(x) > 0 and w2;λ(x)  > 0 on ∑λ \ BR0 then λ ϵ Λ. 

 

Proof: By lemma 3.2 and assumptions we have, 

 

Δ w1;λ(x)+ C1;λ_(x) w1;λ(x) ≤ 0 in ∑λ \ BR0 

w1;λ(x) on ∂(∑λ \ BR0) 

and 

Δ w2;λ(x)+ C2;λ_(x) w2;λ(x) ≤ 0 in ∑λ \ BR0 

 

W2;λ(x) on ∂(∑λ \ BR0) 

Let w(x) = 1/ |x| + log(1/ |x|) : Then 

 

Δw +1/ |x|2 = 0 

 

Δw +1/ {|x|2( 1/ |x|  + log (1/ |x|))}w= 0   in R3 \ {0} 

 

By equation (3.14) and (3.15) we have 

 

Δ w + C1;λ_(x) w ≤ 0 in ∑λ \ BR0
   and w > 0 on  closure of ∑λ \ BR0

  

    and 

Δ w + C2;λ_(x) w ≤ 0 in ∑λ \ BR0
   and w > 0 on  closure of ∑λ \ BR0 

 

By lemma 3.1 we have 

 

w1;λ(x)/ w(x)= [(u(x) – u(xλ))/log(|x|) ].[ log(|x|) /w(x)] → 0 as  |x|→∞. 

and 

w2;λ(x)/ w(x)= [(v(x) – v(xλ))/log(|x|) ].[ log(|x|) /w(x)] → 0 as  |x|→∞. 

By lemma 2.2, we have 

 

w1;λ(x) > 0 in ∑λ \ BR0
  

and 

w2;λ(x) > 0 in ∑λ \ BR0
  

Then by the assumptions, 

 

w1;λ(x) > 0 in ∑λ
 

and 

w2;λ(x) > 0 in ∑λ
 

This implies that λ ϵ Λ. 

 

Lemma 3.4 Let λ ϵ Λ then ∂u/ ∂x1 < 0 . 

 

Proof: By lemma 3.2 we have, 

Δ w1;λ(x)+ C1;λ_(x) w1;λ(x) ≤ 0 in ∑λ 

 

Δ w2;λ(x)+ C2;λ_(x) w2;λ(x) ≤ 0 in ∑λ 
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And 

Δ w1;λ(x) > 0, Δ w2;λ(x) > 0 in ∑λ. 

 

Since Δ w1;λ(x)= 0, Δ w2;λ(x)= 0 on Tλ, we obtain ∂ w1;λ / ∂x1< 0 and ∂ w2;λ / ∂x1< 0 on Tλ by the Hopf boundary lemma. Therefore we 

have, 

∂u/ ∂x1 = (1/2) ∂ w1;λ / ∂x1  on Tλ 

∂v / ∂x1 = (1/2) ∂ w1;λ / ∂x1  on Tλ 

 

Now we are well equipped to prove our main result about symmetry. 

 

Theorem 3.1  Assume that g1, g2, g3, g4 satisfies 

 

lim sup|x|→∞ rαigi(r) < 1 for some αi > 0; i = 1; 2; 3; 4.                                              (3.16) 

 

Let (u; v) be the solution of the system (1.1)satisfying u+ ϵ L∞(R3); v+ ϵ L∞(R3) 

where  

u+ = max {0; u} ; v+ = max{0; v}  

and 

0 < 1/ 3ω3  ∫R3 g1(|x|)eu(x) + g2(|x|)ev(x)dx = β1 < ∞ 

and  

0<1/3ω3∫R3 g3(|x|)eu(x) +g4(|x|)ev(x)dx=β2 <∞ 

 

If αi + βj > 3, then ( u ,v ) must be radially symmetric. 

 

Proof: From lemma 3.1 we have, 

lim|x|→∞ u(x)/ log(|x|)  = -β1 ; lim|x|→∞ v(x)/ log(|x|)  = -β2 

 

lim|x|→∞ u(x)= - ∞ and lim|x|→∞ v(x)= - ∞ 

 

then there exist R1 > R0 and R2 > R0 such that 

 

max{u(x) : |x| ≥ R1} ≤ min{u(x) : |x| ≥ R0} 

and 

max v(x) : {v(x) : |x| ≥ R2}≤ min{v(x) : |x| ≥ R0} 

 

Let Rm = max {R1;R2}, therefore we have 

Max{u(x) : |x| ≥ Rm} ≤ min{u(x) : |x| ≥ R0} 

and 

Max{v(x) : |x| ≥ Rm} ≤ min{u(x) : |x| ≥ R0} 

 

where R0 is constant such that 

1/ |x| + |x|2 log (1/ |x|) ≥ C1;λ_(x) 

and 

1/ |x| + |x|2 log (1/ |x|) ≥ C2;λ_(x)    for some   |x| ≥ R0. 

 

We shall prove the theorem in three steps. 

 

Step-I: To prove [Rm;∞) subset Λ. 

Let  

λ ϵ[Rm;∞) , therefore λ≥ Rm: 

 We know that BR0 subset ∑λ. Also we have 

w1;λ_(x) > 0, w2,λ(x) > 0 in BR0 

Thus λϵΛ. Therefore 

[Rm;∞) is subset Λ. 

Step-II: Let λ0 ϵ Λ, then we have to prove that there exist ϵ > 0 such that (λ0 - ϵ; λ0] subset Λ. We shall prove this step by the method 

of contradiction. Suppose that there exist an increasing sequence {λi}; i = 1; 2; 3; :::, such that λi ϵΛ does not hold and λi → λ0 as i → 

∞. By lemma 3.2 we have a sequence {xi},i = 1; 2; 3; ::: such that 
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xi ϵ ∑λi ∩ BR0  and w1;λi_(xi) ≤0, w1;λi_(xi) ≤0. 

Then there exist a subsequence which we call again sequence {xi} converges to some point x0 ϵ ∑λi ∩ BR0 . Then 

w1;λ0_(x0) ≤ 0 and w2;λ0_(x0) ≤ 0  . 

Since w1;λ0_> 0 and w2;λ0_> 0 ; in ∑λ0 .We have x0 ϵTλ0 . By mean value theorem we see that there exist a point yi satisfying     

      ∂u/ ∂x1(yi) ≥ 0 and ∂v/ ∂x1(yi) ≥ 0 

on the straight segment joining xi to (xi)λi for each i = 1; 2; 3; :::: Since yi →x0 as i →∞; we have  

∂u/ ∂x1(x0) ≥ 0 and ∂v/ ∂x1(x0) ≥ 0. 

On the other hand, since x0 ϵTλ0 , we have 

∂u/ ∂x1(x0) <0 and ∂v/ ∂x1(x0) < 0. 

This is a contradiction; hence step (II) is proved. 

 

Step-III: Consider the following two statements (A) and (B), 

 

(A) u(x) = u(xλ1); v(x) = v(xλ1) for some λ1 > 0 

 and  

∂u/ ∂x1(x0) <0 , ∂v/ ∂x1(x0) < 0 on Tλ   for some λ> λ1. 

 

(B) u(x) = u(u0); v(x) = v(x0) for some λ0 > 0  

and  

∂u/ ∂x1(x0) <0 , ∂v/ ∂x1(x0) < 0 on Tλ  for some λ> 0. 

 

We have to prove that either (A) or (B) holds. 

If g1; g2; g3; g4; are not constant then statement (B) must holds. 

Let λ1 = inf{λ > 0 : [λ;∞)subset Λ}. 

We distinguish the proof in two cases: (i)λ1 > 0 and (ii) λ1 = 0: 

Case (i): The case where λ1 > 0: Let  

w1;λ1_(x) = u(x) - u(xλ1) and w2;λ1_(x) = v(x) - v(xλ1). 

 Since u and v are continuous we have  

 

w1;λ1_(x) ≥0; w1;λ1_(x) ≥0 ,in ≤ ∑λ1 . 

From lemma 3.2, we have 

Δ w1;λ1(x)+ C1;λ1_(x) w1;λ1(x) ≤ 0  

and 

Δ w2;λ1(x)+ C2;λ1_(x) w2;λ1(x) ≤ 0  

 

Hence, by strong maximum principle we have that either  

 

w1;λ1 > 0; w2;λ1 >0; in ∑λ1  

or       

w1;λ1 = 0; w2;λ1 = 0; in ∑λ1. 

 

 Assume that  

w1;λ1 > 0; w2;λ1 >0  in ∑λ1 then λ1 ϵ λ. 

 

From step (II) there exist ϵ > 0 such that (λ1 - ϵ;  λ1] .This contradicts definition of λ1: so  

 

w1;λ1 = 0; w2;λ1 = 0; 
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Since (λ1;∞)subset of  Λ , we have 

 

∂u/ ∂x1(x0) <0 , ∂v/ ∂x1(x0) < 0 on Tλ 

Thus we get statement (A). 

 

Case (ii): The case where λ1 = 0. From continuity of u; v we have  

 

w1;λ0(x) ≥ 0 , w2;λ0(x) ≥ 0 in ∑0  

 i.e.  

u(x) ≥ u(x0) in v(x) ≥ v(x0) in ∑0 , 

 

  by lemma 3.4, we have,  

∂u/ ∂x1 <0 , ∂v/ ∂x1 < 0 on Tλ for λ> 0 

 

Assume that g1; g2; g3; g4 are not constant, in this case we have to prove that (B) must hold. Assume to the contrary that (A) holds. 

From (1.1) we have, 

 

gi(|x|) = gi(|xλ|) for x ϵ ∑λ and; i = 1; 2; 3; 4. 

 

 Since gi(r) are non increasing, we have gi are constant. This contradicts to the assumption. Thus (B) holds. 

If (B) occurs in step (III) then we can repeat all the three steps for negative X1- direction about plane 

x1 = 𝜆1 < 0 

or  

u(x) ≤ u(x0) ; v(x) ≤v(x0) in ∑0                                             (3.17) 

 

If (3.17) occurs then 

u(x) = u(x0) and v(x) = v(x0) in ∑0: 

 

Therefore, u and v must be radially symmetric in X1-direction about some plane and strictly decreasing away from the plane. Since 

equation (1.1) is invariant under rotation we may take any direction as X1-direction and conclude that (u; v) is symmetric in every 

direction about some plane. Therefore, (u; v) is radially symmetric and decreasing the case where gi are not constant then (B) and 

(3.17) holds. Then (u; v) is radially symmetric about origin and 

 

ur < 0 , vr < 0 for |x| = r > 0: 
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